Титановые корзины для гальваники

0,00 грн.
С НДС

ТИТАНОВЫЕ КОРЗИНЫ

 Использование отходов растворимых анодов
Переплавка отходов растворимых анодов для многих заводов затруднительна, да и литые аноды в большинстве случаев работают хуже катаных. Более рационально использование анодных сетчатых корзин, в которые загружают отходы, предварительно нарубленные на кусочки размером от 25x25 до 50x50 мм. Для цианистых и щелочных ванн корзины делают из углеродистой или коррозионно-стойкой стали, для кислых — из пластмассы или из стали покрытой пластмассой. В пластмассовые корзины опускают пластинку из анодного металла для подвода тока к отходам.
  В последнее время в обиход стали входить значительно более удобные титановые корзины. На титане в присутствии ничтожных следов кислорода или иных окислителей образуется тонкая (0,000005 мм) непроводящая окисная пленка, обладающая свойством существенно снижать свое сопротивление в местах, подвергающихся относительно большому удельному давлению, например под краем лежащего в корзине обрезка. В других местах эта электрически и химически изолирующая пленка сохраняет свои электрические свойства. Ее пробивное напряжение в растворе сульфатов или серной кислоты доходит до 80 В, в солянокислой среде оно падает до 7—8 В, что тоже достаточно для работы ванны, а в обычных сернокислых электролитах с примесью хлоридов имеет какую-то промежуточную величину. Пленка разрушается только в присутствии иона фтора. Такая корзина в никелевом электролите требует лишь на 0,1 В большее напряжение, чем обычный плоский анод — это в пять раз меньше экономически допустимой разницы.

 При пользовании титановыми корзинами нужно, чтобы корзина была всегда наполнена анодными обрезками выше верхнего края деталей. В случае, если какая-либо выступающая точка детали окажется вблизи пустой части корзины, против нее на стенке корзины в точке "Y" возможно повышение напряжения, приводящее к пробою пленки и коррозии титана (рис. 2). При нахождении под током совершенно пустой корзины ее потенциал может подняться до потенциала анодного окисления, что, наоборот, сильно утолщит пленку и корзину придется протравить для восстановления электрического контакта с обрезками металла. Без тока в неработающей ванне корзина может находиться и пустой, и полной. На корзину надевают чехол, как на обычный анод.
Действующая площадь анодной корзины примерно в полтора раза больше площади ее проекционной поверхности. На 1 дм² площади проекционной поверхности корзины можно подавать ток до 6,5 А.
Конструкция анодной титановой корзины. Сечение корзины, как правило, прямоугольное, толщиной от 50 до 100 мм (в более узких анодные обрезки могут заклиниваться и зависнуть), шириной 100—300 мм. Высота корзины обычно равна высоте анода. Верхний край корзины должен быть выше зеркала электролита на 50—70 мм для возможности ее загружать не вынимая из ванны.

Торцовые стенки делают сплошными, стенки, обращенные к деталям, — из сетки или из горизонтальных прутков с интервалами порядка 20 мм и вертикальных, сдерживающих горизонтальные от выкручивания, с интервалом 70—l00 мм, дно — в виде сплошного поддона с
бортиками высотой 20—30 мм (рис. 29). На рисунке вертикальные прутки не показаны.
Сварку всех стыков лучше вести аргоно-дуговым способом, но даже при значительном различии в толщине свариваемых деталей, хорошо зачищенных поверхностях и быстрой сварке (менее секунды на точку) титан удается доброкачественно сварить обычной точечной или контактной сваркой — при быстрой сварке кислород и азот воздуха не успевают продиффундировать к месту сварки. Сетку лучше варить заложив ее край между стенкой корзины и накладкой из титановой полоски точечной сваркой с интервалами точек 25— 50 мм. После сварки желательно корзину протравить. Шов, выполненный аргонной сваркой, должен быть светлым, но не серым или белым.
Подвешивание титановой и анодной корзины. Корзину подвешивают на анодную штангу двумя крюками, приваренными к торцовым стенкам.

Крюки выгоднее делать с клепанной медной или никелевой накладкой для улучшения электрического контакта с арматурной штангой
ребро на лезвие для увеличения давления в контакте стоит только при сравнительно небольших токах, ибо отвод теплоты от лезвия хуже, чем от тупого ребра. Для улучшения контакта при больших токах к контактирующему ребру приклепывают медную или, лучше, никелевую накладку (рис. 31).
 Насыпная плотность никелевых шариков около 5,7 кг/дм³, никелевых квадратиков размером 25х25 мм — около 5,0 кг/дм³, а механическая нагрузка, выдерживаемая в пределах упругости титановым крючком сечением 6х6 мм, составляет 100 кг, сечением 12,5х12,5 мм— 250 кг, а при сечении 25x6 мм — 1,8т. Электрический расчет титановой корзины. Электропроводность титана в 28 раз хуже, чем меди, поэтому сечение токонесущих титановых деталей корзины, расположенных выше зеркала электролита, берут из расчета 1 А/мм², а погруженных в электролит — до 5 А/мм². При нагрузке 125 А на крюк сечением 25x6 мм и длиной 150 мм с приклепанной медной накладкой при работе над горячей (60—70 °С) никелевой ванной, при перегреве крюка на 25 °С сверх температуры анодной штанги (50—60 С) энергетические потерн на нагрев крюка составляют 8 Вт; при нагрузке 65 А, размере крюка 12х6х150 мм и прочих вышеприведенных условиях потери равны 4 Вт. Переходное сопротивление заклепки накладки ничтожно, при ее диаметре 6 мм оно менее 3-19 Ом. При полной нагрузке ванны потери в крюках составляют менее 1 % от общего расхода электроэнергии.